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Abstract Tests for linkage are usually performed using
the lod score method. A critical question in linkage ana-
lyses is the choice of sample size. The appropriate sample
size depends on the desired type-I error and power of the
test. This paper investigates the exact type-I error and
power of the lod score method in a segregating F2 popu-
lation with co-dominant markers and a qualitative mono-
genic dominant-recessive trait. For illustration, a disease-
resistance trait is considered, where the susceptible allele
is recessive. A procedure is suggested for finding the ap-
propriate sample size. It is shown that recessive plants
have about twice the information content of dominant
plants, so the former should be preferred for linkage de-
tection. In some cases the exact α-values for a given
nominal α may be rather small due to the discrete nature
of the sampling distribution in small samples. We show
that a gain in power is possible by using exact methods.

Keywords Power · Type-I error · Maximum likelihood ·
Fisher information · Co-dominant markers · LOD score ·
Linkage analysis · Sample size

Introduction

Because of their almost unlimited number and due to
their independence from environmental factors as well as

dominance and epistatic effects, co-dominant molecular
markers are highly superior to biochemical markers and
morphological markers. Linkage maps, therefore, have
been constructed for many economically important or-
ganisms (Sunil 1999). In the field of practical plant
breeding, for example, the selection for a dominant dis-
ease resistance trait is a common breeding objective (e.g.
nematode resistance in sugar beet, Jung et al. 1992).
Linkage maps of crop species are often constructed with
segregating populations, i.e., F2 populations or back-
crosses (Sunil 1999).

In this paper, we present our results on necessary
sample sizes for molecular marker-assisted linkage 
detection for a dichotomous (dominant-recessive) trait.
Analysis is based on a segregating F2 population. The
sample size determination is carried out by controlling
type-I and type-II errors [type-I error = α = probability
that the test rejects H0 (no linkage) although H0 is 
true; type-II error = β = probability that the test fails 
to reject H0 although H0 is false]. It is usually con-
venient to work not with the type-II error (β) but rather 
with its complement, the power (1 – β). The power 
(1 – β) is the probability that a test rejects H0 when it is
false; i.e., the probability of detecting linkage when it
exists.

In most linkage analyses an explicit consideration of
both types of error is ignored and the actual numerical
magnitudes of α and β are completely unknown. In
many tests of genetic linkage, only type-I errors are con-
sidered and type-II errors are commonly ignored. More
often than not, however, it is the power of the test for
linkage that is of primary importance.

By the traditional ‘lod score’ method of linkage anal-
ysis, the test for linkage of autosomal loci is declared
significant when the maximum of the lod score (Z) ex-
ceeds the bound Z0 = 3.0 (Ott 1991). The lod score is es-
sentially a likelihood ratio statistic for the test of no link-
age. The rationale for the bound Z0 = 3 lies in the fact
that for the likelihood ratio test (Ott 1991), so
for Z0 = 3 we have α ≤ 0.001. Unfortunately, this upper
bound for the type-I error may be rather conservative
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(Ott 1991), so that the use of the true α = 0.001 threshold
would usually increase power.

This paper employs exact methods that allow us to as-
sess type-I error and the power of tests for linkage and to
choose an appropriate sample size. All of the investiga-
tions reported in this paper are restricted to the analysis
of traditional two-point linkage (Ott 1991).

Problem and theory

The investigations are based on a diploid segregating F2
population co-segregating for a molecular marker and a
gene coding for a qualitative trait. For illustrative pur-
poses, the case of a disease resistance gene will be con-
sidered here, where the susceptible allele is recessive,
while the resistant allele is dominant. In this case, we
suggest that linkage analysis be based on susceptible
plants. The situation in which the susceptible allele is
dominant is completely analogous and is identical to the
case presented here, with the only difference that linkage
analysis is based on resistant plants. The results given
here are generally applicable for a qualitative trait with
one recessive and one dominant allele. The two alleles at
the resistance gene locus are denoted by A (= resistant)
and a (= susceptible) with A dominant over a. The mark-
er alleles with co-dominant expression are B1 and B2
with a recombination value R between the marker and
the disease resistance gene locus.

Selfing or intercrossing the F1 generation AaB1B2 of
an initial cross of homozygous parents creates a segre-
gating F2 population. In this paper, linkage analysis is
based on the sub-population of susceptible (= recessive)
individuals of this F2. Results for the sub-population of
resistant individuals and the total population are avail-
able from the second author upon request. The double
heterozygote AaB1B2 produces the gametes AB1, aB1,
AB2 and aB2 with frequencies 1/2(1 – R), 1/2R, 1/2R and
1/2(1 – R), respectively. The recombination value is as-
sumed to be equal in both sexes. The composition of the
segregating F2 is given in Table 1.

The approach of this paper is restricted to the analysis
of the simplest situation of two-point linkage by the tra-
ditional approach of maximum lod score. This is defined
as the logarithm of base 10 of the ratio of the likelihoods
when the loci are at their maximum-likelihood recombi-
nation fraction and when the loci are taken to be un-
linked.

We denote:
N = number of tested individuals,
k = number of phenotypically distinct classes 

(considering both the resistance 
and the marker loci),

fi = expected relative frequency of class 
zi = observed absolute frequency of class 
L(R) = likelihood function dependent 

on the recombination fraction 
Z(R) = lod score for recombination value 

The maximum likelihood estimate of the recombina-
tion fraction R is that value for which the lod score (or
equivalently, the likelihood or log-likelihood) is maxi-
mized. A conventional rule is to conclude that autosomal
loci are linked whenever the maximum lod score exceeds
3 (Ott 1991). What are the associated true type-I errors
of this approach? The upper bound for the type-I error is
0.001, but the true type-I error may be much lower. To
compute the exact type-I error and the power, exact dis-
tributions of the lod score need to be considered. Since
the lod score depends on the number N of tested individ-
uals, the exact distributions of and of under H0
must be calculated for different values of N.

In many cases, a “cook-book”-type application of the
conventional critical lod score values (2, 3 or other) ac-
tually involves true type-I and type-II errors of usually
unknown magnitudes. Determination of necessary sam-
ple sizes in linkage analysis based on the exact distribu-
tions and controlling prespecified type-I and type-II er-
rors, therefore, should be preferred. Based on the exact
distributions of and under H0 and H1 for the sub-
population of susceptible individuals, the required sam-
ple size can be easily calculated by controlling type-I
and type-II errors. We consider the null hypothesis H0: R
= 0.5 and the alternative H1: linkage with true recombi-
nation fraction R.

We suggest basing linkage analyses only on the sub-
population of susceptible (recessive) individuals of the
F2, since these have the highest information content.
This is so, because there are only three susceptible geno-
types at the marker level, which can all be distinguished
phenotypically, whereas not all resistant genotypes can
be separated based on their phenotype. A more detailed
discussion is given in the next section.

The expected relative frequencies fi, (i = 1, 2, …, k) of
the three phenotypically distinct classes (k = 3) of sus-
ceptible (recessive) plants are (Table 1):

Table 1 Genotypes of a segregating F2 population from a cross
AAB1B1 × aaB2B2 with associated gametic and genotypic frequen-
cies
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(1)

The observed absolute frequencies are denoted as z1, z2
and z3 respectively, with z1 + z2 + z3 = N = number of test-
ed susceptible individuals. The likelihood function L(R) is

(2)

With L(0.5) = 2z2–2N one obtains for the
lod score

(3)

The maximum likelihood estimate is found by setting
to zero the first derivative of the lod score (or equiva-
lently of the log-likelihood) and verifying that this maxi-
mizes the lod score. We find the following estimate:

For known coupling phase (which is assumed throughout
this paper), R is restricted to lie between 0 and 0.5. Thus,
estimates of R larger than 0.5 may be set equal to 0.5:

(4)

For the maximum lod score one obtains: 

(5)

The type-I and type-II errors are derived from the exact
distributions of and under the null hypothesis H0:
no linkage (i.e. R = 0.5) and under H1: linkage with a
specified recombination value R (0 ≤ R < 0.5). The exact
distributions of and under H0 and under H1 can
be easily found by noting that (z1, z2, z3) is multinomially
distributed with parameters N, f1 = R2, f2 = 2R(1–R), and
f3 = (1– R)2. Since is a monotonically decreasing
function of on the interval [0; 0.5], both statistics 
are equivalent and it suffices to consider the distribution
of .

In order to obtain the exact distributions of we use
the following approach:

Step 1: For all possible combinations of (z1, z2, z3) com-
pute by Eq. 4.

Step 2: Sort -values in ascending order and from the
associated (z1, z2, z3)-values compute the corre-
sponding multinomial probability.

Step 3: Sum up the probabilities for equal -values.
Step 4: Calculate the cumulative probabilities.

The required sample size for a type-I error α, a power of
1 – β and linkage with a recombination value R < 0.5 is
obtained by the following computational procedure:

1. Set N= 2.
2. Compute cumulative probabilities for R=0.5 and R<0.5.
3. From the distribution for R= 0.5, determine the largest

value of for which the cumulative probability is
smaller or equal to the specified α. This value of 
will be denoted as Rcrit; the corresponding probability
will be denoted as αexact. In the test, values 
are judged to be significant. Determine the cumula-
tive probability of the distribution with an R< 0.5 at a
critical level Rcrit. This cumulative probability is the
exact power of the test. It is denoted as (1 – βexact). If
the power (1 – βexact) is smaller than the predeter-
mined power (1 – β), then augment Nby one and go to
step (2). The final value of Nis the required sample
size for a type-I error α, a power of (1 – β) and a link-
age with recombination value R. Note that usually α
> αexactand (1 – β) < (1 – βexact).

Results and discussion

Numerical results are presented in Table 2 for a Type I er-
ror of α = 0.001. The computations were programmed us-
ing the SAS system. The program is easily adapted for
other values of the power, the type-I error α and the sam-
ple size N. Tables for other values of α as well as the SAS
source code are available as Electronic Suplementary Ma-
terial at http://dx.doi.org/10.1007/s00122-002-1099-6.
Suppose the researcher wants to detect linkages R = 0.05
or smaller with a power of 0.95 or larger at a type-I error
rate of α = 0.001. From Table 2 we find that the necessary
sample size is N = 11. At this sample size, the power is 
(1 – βexact) = 0.98 and the type-I error is αexact = 0.00042772.

For small N, the distribution of is pronouncedly dis-
crete, so αexact varies notably with N. The variation in αexact
may be quite substantial even for relatively large N. In 
a given experiment, it may be useful to consider the two
values of αexact immediately below and above the value of
αexact closest to the intended α. In this paper, the simplest
case was presented, where only recessive (susceptible) ge-
notypes are used for linkage analysis. This was done be-
cause these genotypes have the highest information con-
tent. In practice, the major share of the total cost of a link-
age analysis is spent on marker identification, while raising
the plants and subjecting them to resistance testing is not
usually a limiting factor. Therefore, it is often affordable to
raise resistant plants together with susceptible ones and
then select only susceptible ones for linkage analysis.

Some explanation as to why susceptible plants have a
higher information content than resistant plants is in order.
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Among susceptible plants, there are only three genotypes,
and these can all be distinguished phenotypically, whereas
there are six different resistant genotypes but only three
distinct phenotypes. From this fact, a higher information
content of susceptible plants is expected. A more rigid ex-
planation can be based on Fisher’s information, i.e. on the
second derivative of the log-likelihood with respect to the
parameter R. Fisher’s information i(R) is given by

In large samples, the variance of the maximum likeli-
hood estimate of R is (Weir 1996)

where E[·] denotes the expected value. The expected in-
formation E[i(R)] may be used to compare three different
settings: (1) only susceptible plants used; (2) only resis-
tant plants used; (3) all plants (susceptible and resistant)
used. For this comparison, it is useful to consider the ex-
pected information per experimental unit (plant): E[i(R)]/N.
The explicit expressions for the expected information per
plant are (Hühn 1995):

Table 2 Exact critical values of (Rcrit), exact type-I errors (αexact) and exact power for different values of R at an upper bound α =
0.001. Values are judged to be significant

Sample size Rcrit Power αexact

N R = 0.01 R = 0.02 R = 0.05 R = 0.10 R = 0.20 R = 0.30

5 0.00000 0.90 0.82 0.60 0.35 0.11 0.03 0.00097656
6 0.00000 0.89 0.78 0.54 0.28 0.07 0.01 0.00024414
7 0.07143 0.99 0.97 0.85 0.58 0.20 0.05 0.00091553
8 0.06250 0.99 0.96 0.81 0.51 0.14 0.03 0.00025940
9 0.11111 1.00 0.99 0.94 0.73 0.27 0.06 0.00065613

10 0.10000 1.00 0.99 0.92 0.68 0.21 0.04 0.00020123
11 0.13636 1.00 1.00 0.98 0.83 0.33 0.07 0.00042772
12 0.16667 1.00 1.00 0.99 0.91 0.46 0.11 0.00077194
13 0.15385 1.00 1.00 0.99 0.89 0.38 0.07 0.00026676
14 0.17857 1.00 1.00 1.00 0.94 0.50 0.11 0.00045612
15 0.20000 1.00 1.00 1.00 0.97 0.61 0.16 0.00071545
16 0.18750 1.00 1.00 1.00 0.96 0.54 0.11 0.00026753
17 0.20588 1.00 1.00 1.00 0.98 0.63 0.16 0.00041070
18 0.22222 1.00 1.00 1.00 0.99 0.72 0.20 0.00059662
19 0.23684 1.00 1.00 1.00 1.00 0.78 0.26 0.00082903
20 0.22500 1.00 1.00 1.00 0.99 0.73 0.20 0.00033977
21 0.23810 1.00 1.00 1.00 1.00 0.80 0.24 0.00047034
22 0.25000 1.00 1.00 1.00 1.00 0.85 0.29 0.00063002
23 0.26087 1.00 1.00 1.00 1.00 0.89 0.34 0.00082075
24 0.25000 1.00 1.00 1.00 1.00 0.85 0.28 0.00035863
25 0.26000 1.00 1.00 1.00 1.00 0.89 0.33 0.00046811
26 0.26923 1.00 1.00 1.00 1.00 0.92 0.38 0.00059756
27 0.27778 1.00 1.00 1.00 1.00 0.94 0.43 0.00074813
28 0.28571 1.00 1.00 1.00 1.00 0.96 0.47 0.00092078
29 0.27586 1.00 1.00 1.00 1.00 0.94 0.41 0.00043089
30 0.28333 1.00 1.00 1.00 1.00 0.96 0.45 0.00053288
31 0.29032 1.00 1.00 1.00 1.00 0.97 0.50 0.00064950
32 0.29688 1.00 1.00 1.00 1.00 0.98 0.54 0.00078139
33 0.30303 1.00 1.00 1.00 1.00 0.98 0.58 0.00092912
34 0.29412 1.00 1.00 1.00 1.00 0.98 0.52 0.00045720
35 0.30000 1.00 1.00 1.00 1.00 0.98 0.56 0.00054662
40 0.31250 1.00 1.00 1.00 1.00 0.99 0.65 0.00052637
45 0.32222 1.00 1.00 1.00 1.00 1.00 0.72 0.00048638
50 0.34000 1.00 1.00 1.00 1.00 1.00 0.84 0.00089497
60 0.35000 1.00 1.00 1.00 1.00 1.00 0.90 0.00064967
70 0.36429 1.00 1.00 1.00 1.00 1.00 0.96 0.00083376
80 0.37500 1.00 1.00 1.00 1.00 1.00 0.98 0.00097686
90 0.37778 1.00 1.00 1.00 1.00 1.00 0.99 0.00064302

100 0.38500 1.00 1.00 1.00 1.00 1.00 1.00 0.00070085
120 0.39583 1.00 1.00 1.00 1.00 1.00 1.00 0.00075443
140 0.40357 1.00 1.00 1.00 1.00 1.00 1.00 0.00074665
160 0.40938 1.00 1.00 1.00 1.00 1.00 1.00 0.00070139



Figure 1 shows the dependence of the expected informa-
tion per plant on the recombination rate R and the plant
material. It can be seen that the susceptible plants have
the highest information content.

Sample size calculations for the cases of resistant
plants and of all plants can be performed in the same
way as in the case of susceptible plants. The only differ-
ence is that maximum likelihood estimates of the recom-
bination rate must be obtained numerically (Weber and
Wricke 1994), e.g., by a Newton-Raphson algorithm
(Weir 1996) or by an EM algorithm (Ott 1977). A com-
puter program based on a Newton-Raphson algorithm
(using the SAS system) is available as Electronic Suple-
mentary Material at http://dx.doi.org/10.1007/s00122-
002-1099-6.

Determining α

Morton (1955) states that one should be “especially anx-
ious to avoid the assertion that two genes are linked
when in fact they are not, since a misleading linkage
map is worse than no linkage map at all.” This suggests
that a very small α, like 0.0001, is appropriate. A more
rigid justification for small α is this: cases of apparent
linkage will be made up in part of true linkages, in part
of type-I errors. What the experimenter usually needs to
control is the posterior probability θ that an apparent
linkage observed among numerous markers and a gene
of interest is a type-I error rather than a true linkage.
This posterior type-I error probability θ clearly is not the
same as α, but it is related to α. This sub-section de-
scribes a strategy for chosing α so that the posterior
probability θ is controlled at the pre-specified level.

To compute the posterior probability θ it is necessary
to have an idea of the probability of linkage among two
loci (φ). This probability is roughly equal to the proba-
bility that two randomly chosen loci are on the same
chromosome, i.e. φ ~ h–1, where h is the haploid number
of chromosomes (Morton 1955). A more accurate assess-
ment of φ would need to account for the length of all
chromosomes, because two loci on the same chromo-
somes are unlinked when R = 0.5 (see comments below).
Here, we will just assume φ ~ h–1 for simplicity. Another
quantity, that needs to be determined is the average pow-
er of the used test to detect linkage when, in fact, the two
loci are linked. This average will be denoted as . With
this information, θ is given by (Morton 1955; Ott 1991)

(6)

Solving Eq. (6) for α leads to

(7)

To illustrate Eq. (6) assume that the probability that two
randomly chosen loci are linked is φ = 0.05. Also assume
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that the power of the test for linkage is always exactly
100%, i.e., one will detect every linkage whenever it is
present. If we choose a type-I error of α = 0.05, 48.7%
of our significant tests will be false positives, i.e. θ =
0.487 (Ott 1991). Equation 7 may be used to determine a
more appropriate α. If, for example the average power is

, the probability of linkage is φ = 0.07 and the
experimenter wants to control the posterior probability
of a type-I error at θ = 0.05, α should be chosen smaller
than 0.004.

For linked loci, R may be regarded as uniformly dis-
tributed between 0 and 1/2 (Morton 1955), hence

where P(R) is the power for a given value of R. From the
exact distribution of for given R, and the a priori distri-
bution of R, it is easy to derive P(R). Integration may be
approximately done by averaging P(R) for a dense grid
of R-values, e.g. 0.001, 0.002, 0.003, …, 0.5.

It is noted that P(R) depends on α and N. One can ei-
ther fix α and choose the smallest N for which the de-
sired power is attained, or one fixes N and finds the
largest α that yields the desired power . When fixing α,
the upper bound

(8)

should be observed. Some numerical values for these up-
per bounds are given in Table 3. For probabilities θ and
φ smaller than 10%, the true type-I error rate α must be
smaller than 1%; i.e. the true values of α are particularly
small! Since P(R) depends on α and N, Eq. (7) usually

Fig. 1 Information content per plant (expected Fisher information
E[i(R)], divided by sample size N) depending on genetic composi-
tion of plant material (all plants, resistant plants only, susceptible
plants only) and true recombination rate



assessment, the lengths of the different linkage groups
need to be taken into account. A simple approach is to
simulate the a priori distribution of R by repeatedly sam-
pling independent pairs of loci from the whole genome
and determining their recombination fraction R. This
simulated a priori distribution of R may be used to derive
both φ and . Up to simulation errors, the resulting θ
will be exact. Computations are straightforward, but
computationally more demanding than the approximate
method.

Finally, some numerical results on true type-I errors
for critical lod scores 2, 3 and 4 are given in Table 4. The
exact values are considerably below the upper bound,
which shows that the traditional lod score method is
rather conservative in the case at hand, and a gain in
power is possible by using exact methods.

This paper has presented a method to compute exact
type-I and type-II errors for the lod score method to de-
tect linkage between a qualitative trait and a co-domi-
nant marker. We have suggested choosing the type-I er-
ror rate, α, so that the a posterori probability of linkage,
θ, given a significant test, is controlled at a pre-specified
value. The latter probability is quite relevant, since one
would like to be confident that a significant linkage is
not a false positive. Control of the probability of false
positives among detections is available if some a priori
assumptions can be made about the probability of link-
age.
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has to be solved iteratively. Moreover, N is the sample
size that needs to be determined for given α, β and R. So
the following iterative procedure seems reasonable:

1. Determine θ, φ, and β and choose reasonable starting
values for α and N.

2. Compute for β and the current values of α and N.
3. Compute α from Eq. (7).
4. Determine exact sample size N for given θ, φ, and β

and current α.
5. Iterate steps (2) through (4) until Nand α converge.

One problem with this computational procedure is to
find a good starting value for N. One option is to use 
the normal approximation for sample size in the one-
sided one-sample normal means problem (Steel and
Torrie 1980). Adapted to our problem, this yields

where z1–α is the
(1–α)-percentile of the standard normal distribution.

Our approximate approach for computing θ is based
on the simplifying assumption that φ ~ h–1. For an exact

Table 3 Numerical values for the upper bound on α in Eq. (8)

θ φ

0.02 0.04 0.06 0.08 0.10

0.02 0.0004 0.0009 0.0013 0.0018 0.0023
0.04 0.0009 0.0017 0.0027 0.0036 0.0046
0.06 0.0013 0.0027 0.0041 0.0056 0.0071
0.08 0.0018 0.0036 0.0056 0.0076 0.0097
0.10 0.0023 0.0046 0.0071 0.0097 0.0123

Table 4 Exact Type-I errors for different critical values of the lod
score and different values of N (sample size)

N lod = 2 lod = 3 lod = 4

4 0.0039063 0.00000000 0.000000000
6 0.0031738 0.00024414 0.000000000
8 0.0020905 0.00025940 0.000015259

10 0.0012884 0.00020123 0.000020027
12 0.0007719 0.00013858 0.000017941
14 0.0018596 0.00009000 0.000013720
16 0.0010512 0.00005654 0.000009651
18 0.0019666 0.00015628 0.000006457
20 0.0011107 0.00009108 0.000004182
25 0.0013011 0.00015293 0.000011931
30 0.0013352 0.00006726 0.000006073
35 0.0012738 0.00008302 0.000009600
40 0.0011623 0.00009156 0.000012646
45 0.0010301 0.00009388 0.000005451
50 0.0008950 0.00009157 0.000006290
Upper bound 0.0100000 0.00100000 0.000100000


